1ère année LFSG

Examen de Mathématique I : Analyse

Exercice1(7 points)

1) a/Déterminer le développement limité à l'ordre 2 en 0 de la fonction

$$f(x) = Log\left(1 + \sqrt{1 + \frac{3x}{1+x}}\right).$$

b/Déterminer le développement à l'ordre 2 en $+\infty$ de la fonction f(x).

2) Déterminer le développement limité à l'ordre 2 en 1 de la fonction

$$g(x) = \frac{\sin(x-1)}{e^x \log x}.$$

3) Calculer $\lim_{0} \frac{Log(1+x)}{\sqrt{1+x} - \sqrt{1-x}}$

Exercice2 (9 points)

On considère la fonction de $IR^2 \rightarrow IR$ définie par :

$$f(x) = \begin{cases} y sin\left(\frac{x^2}{x^2 + y^2}\right) & si\ (x, y) \neq (0, 0) \\ 0 & sinon \end{cases}$$

- 1) Etudier la continuité de f en (0,0).
- 2) Calculer f'_x et f'_y en tout point $(x, y) \neq (0,0)$.
- 3) Etudier l'existence de f'_x et f'_y en (0,0).
- 4) Etudier l'existence de f''_{x^2} et f''_{y^2} en (0,0).
- 5) Montrer que f est homogène et en déduire une relation entre f'_x et f'_y en tout point $(x, y) \neq (0,0)$.
- 6) Montrer que f admet une fonction implicite φ au voisinage du point (1,0) et calculer $\varphi'(1)$.

Exercice3 (4 points)

Déterminer les extrémums de

$$2x + y$$
 sous la contrainte: $2x^2 - 2y + 1 = 0$