د العالبي لل دراسات التكنولوجية بناب

INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE NABEUL

Département : Génie Electrique

Classe: EL3 Matière : Electronique

Proposé par Mr Moez HAJJI

EXAMEN

Date: 17 Janvier 2005 Durée : 1^H30 mn

Coefficient: 03

Pas de documents autorisés

N.B/ (Il sera tenu compte de la présentation de la copie et de la qualité de la rédaction. Les résultats devront être encadrés. Des points seront attribués en conséquence).

Barème approximatif de notation : [I/7 pts. II/7 pts. III/2 pts. IV/4 pts].

ETUDE D'UN CAPTEUR DE POSITION

Dans ce problème, on se propose d'étudier un capteur de position qui permet de délivrer une tension U_{pos} image d'une épaisseur x. Cette épaisseur x représente la position d'un rotor (broches d'usinages) d'une machine, destinée à faire l'usinage des pièces métalliques (fig.1.a). Les amplificateurs opérationnels (AO), sont supposés parfaits et ils sont alimentés sous les tensions symétriques $+V_{cc} = +15 \text{ V}$ et $-V_{cc} = -15 \text{ V}$. Leurs tensions de saturations sont $\pm 15 \text{ V}$. Les parties I, II, III, IV peuvent être traitées de façons indépendantes.

I- OSCILLATEUR SINUSOIDAL A FREQUENCE VARIABLE (fig.3):

La bobine du circuit résonnant possède une inductance qui dépend de l'épaisseur x. On réalise donc un oscillateur sinusoïdal dont la fréquence varie aussi en fonction de l'épaisseur x.

- **I.1.** L'interrupteur INT est ouvert.
- a/ Exprimer la fonction de transfert de la chaîne directe $\underline{A} = \underline{V_2}/\underline{V_1}$ en fonction de R_1 et R_2 .
- **b/** Exprimer la fonction de transfert de la chaîne de retour $\underline{B} = \underline{V}_3/\underline{V}_2$ en fonction de R, L, C et ω .
- **I.2.** On ferme l'interrupteur INT. La condition d'oscillation est donnée par A.B = 1.
- a/ Quelle est la relation entre R₁ et R₂, pour que ce montage soit un oscillateur sinusoïdal?
- **b/** Montrer que la fréquence d'oscillation f_0 est tel que : $f_0 = 1/2\pi\sqrt{LC}$.

I.3. Application numérique :

- a/ En utilisant la figure 2 de la page 3, donner dans le document réponse DR1 les valeurs de l'inductance de la bobine pour les quatre épaisseurs proposées à la première ligne du tableau.
- **b/** Calculer pour ces quatre épaisseurs la fréquence d'oscillation f₀ lorsque C = 4 nF. Reporter ces valeurs dans le tableau du document réponses DR1.
- c/ Tracer sur le document réponse DR2 la fréquence f₀ en fonction de x. En déduire l'expression de f₀ en fonction de x.

II- CONVERTISSEUR FREQUENCE-TENSION (fig.1.b):

On réalise un convertisseur fréquence-tension afin d'avoir une tension V₇(t) image de la fréquence f₀ de l'oscillateur à fréquence variable.

II.1. Etude du circuit de mise en forme (fig.4) :

Le montage est alimenté par la tension sinusoïdale $V_3(t)$, de fréquence f_0 (voir chronogramme sur le document réponse DR3). La diode D est supposée parfaite (tension de seuil nulle).

a/ Quelle est la fonction réalisée par l'AO ? Justifier votre réponse.

b/ Tracer sur le document réponse DR4, les tensions $V_4(t)$ et $V_5(t)$.

II.2. Etude du monostable :

La tension de sortie $V_6(t)$ du monostable est donnée sur le document réponse DR5.

a/ Le monostable est-il déclenché par un front montant ou descendant de V₅(t) ?

b/ Quelle est la valeur de la tension V₆(t) pour l'état stable ? Quelle la durée de cet état stable ?

II.3. Etude du moyenneur :

Le moyenneur fournit en sortie une tension $V_7(t)$ qui est la valeur moyenne de la tension $V_6(t)$.

a/ Quelle est la nature du filtre qui permet d'extraire la valeur moyenne de $V_6(t)$? Comment choisir sa fréquence de coupure ?

b/ Montrer que : $V_7(t) = 3.10^{-4}$. f_0 où f_0 est la fréquence de $V_6(t)$ exprimée en Hertz.

II.4. Expression de V₇(t) en fonction de l'épaisseur x :

La fréquence f_0 dépend de l'épaisseur x (question I.3.c). On admettra la relation suivante : $f_0 = 3.10^4 + 2.10^7$.x où f_0 est en Hertz et x en mètre.

a/ Exprimer $V_7(t)$ en fonction de x.

b/ Sachant que : $x = (\Delta x + 10^{-3})/2$ où Δx est la variation de x autour de sa position d'équilibre. Démontrer, la relation : $V_7(t) = 12 + 3.10^3$. Δx (V_7 en volt et Δx en mètre).

III- SOUSTRACTEUR (fig.5):

III.1. Etablir l'expression de $V_8(t)$ en fonction de $V_7(t)$ et de E.

III.2. E est la tension continue de 12 V. Montrer que : $V_8(t) = 3.10^3 .\Delta x$ (V_8 en volt et Δx en mètre).

IV- AMPLIFICATEUR (fig.6):

- IV.1. Exprimer l'amplification U_{pos}/V_8 en fonction de R_4 et R_5 . Calculer R_5 pour avoir une amplification de 3,33 où R_4 = 10 k Ω .
- IV.2. Montrer alors que : $U_{pos} = s.\Delta x$ où s est la sensibilité du capteur de position dont on précisera la valeur numérique et l'unité.
- **IV.3.** Quelle est l'intervalle de variation de U_{pos} lorsque : -1 mm < Δx < 1 mm.

Bon Travail

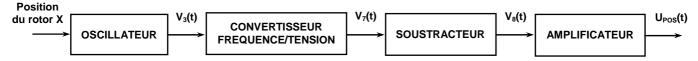


Figure 1.a

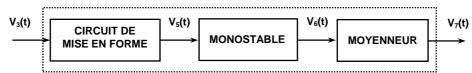


Figure 1.b

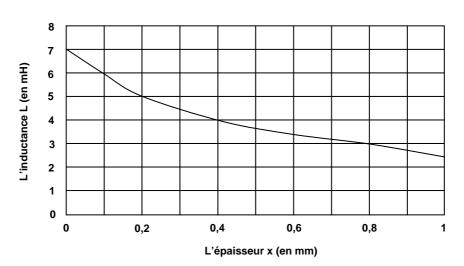
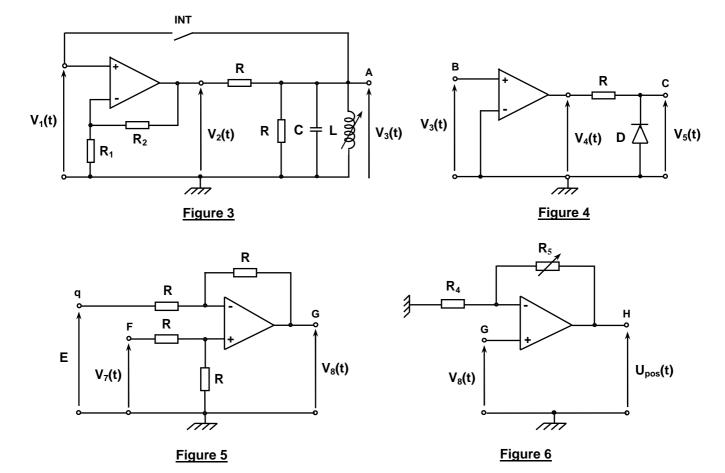



Figure 2

Document réponse (à remettre avec la copie)

Ne pas écrire le nom sur cette feuille

EXAMEN ELECTRONIQUE (EL3) LE 17 Janvier 2005