INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE NABEUL

Département : Génie Electrique Classe : All(21, 22), El(21, 22), ELNI2 Matière : Electronique Analogique Pas de documents autorisés

EXAMEN

Date: 04 Janvier 2013 Durée: 1^H30 mn Coefficient: 02 Crédit: 1,5

<u>N.B</u>/ (Il sera tenu compte de la présentation de la copie et de la qualité de la rédaction. Les résultats devront être encadrés. Des points seront attribués en conséquence).

Barème approximatif de notation : [Pp// 09 pts (1x9). Dp// A/ 5 pts (1x5); B/ 6 pts (1x6)].

Le sujet est constitué de deux parties indépendantes. Chaque partie du sujet doit être traitée sur des feuilles séparées.

Tous les amplificateurs opérationnels sont supposés parfaits. Ils sont alimentés par des tensions continues symétriques $\pm V_{cc} = \pm 15 \text{ V}$. Leurs tensions de saturation sont $\pm V_{sat} = \pm 15 \text{ V}$.

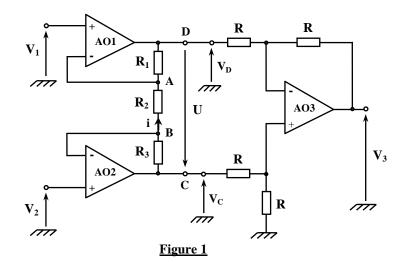
Première partie: ETUDE D'UN COMPARATEUR A FENETRE (Fig.1):

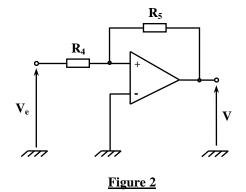
Les amplificateurs opérationnels AO1, AO2 et AO3 fonctionnent en régime linéaire.

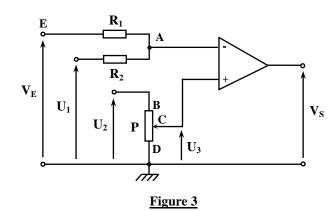
- 1. Donner le potentiel V_A du point A par rapport à la masse en fonction de V₁.
- 2. Donner le potentiel V_B du point B par rapport à la masse en fonction de V₂.
- 3. Exprimer le courant i en fonction de R₂, V_A et V_B puis en fonction de R₂, V₁ et V₂.
- **4.** En déduire alors l'expression de la tension U en fonction de R₁, R₂, R₃, V₁ et V₂.
- **5.** Exprimer la tension U en fonction du potentiel V_C du point C et du potentiel V_D du point D.
- **6.** Exprimer le potentiel de l'entrée inverseuse V⁻ de l'AO3 en fonction de V_D et de V₃.
- 7. Exprimer le potentiel de l'entrée non inverseuse V⁺ de l'AO3 en fonction de V_C.
- 8. Donner alors l'expression de V₃ en fonction de U.
- **9.** Exprimer V₃ en fonction de R₁, R₂, R₃, V₁ et V₂. Quelle est alors la fonction réalisée ?

Deuxième partie: ETUDE D'UN FONCTIONNEMENT NON LINEAIRE (Fig.2 & 3)

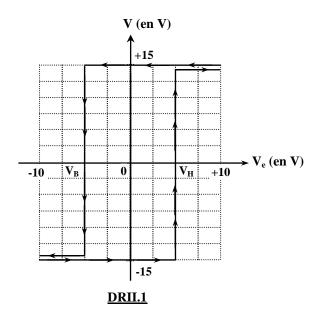
Dans cette partie, les amplificateurs opérationnels fonctionnent en régime de saturation.

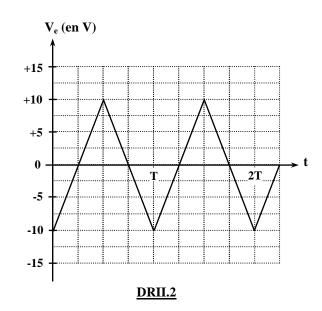

A. Comparateur à hystérésis (Fig.2) :

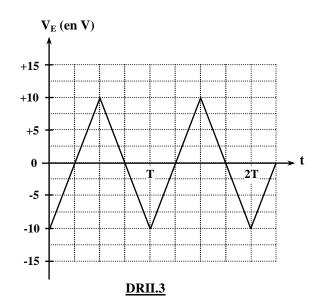

- **A.1.** Exprimer le potentiel de l'entrée non inverseuse V⁺ en fonction de R₄, R₅, V_e et V.
- **A.2.** Donner les expressions des seuils de basculement V_H et V_B.
- **A.3.** La caractéristique de transfert est donnée figure DRII.1 du document réponse. Donner les valeurs numériques de V_H et V_B.
- **A.4.** En déduire la largeur du cycle ΔV_H puis calculé les valeurs des résistances R₄ et R₅.
- **A.5.** Tracer le chronogramme de V en concordance des temps avec V_e , lorsque l'entrée $V_e(t)$ est un signal triangulaire (document réponse DRII.2).

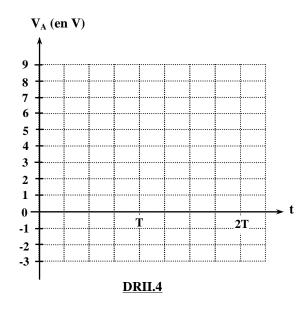

B. Comparateur simple (Fig.3):

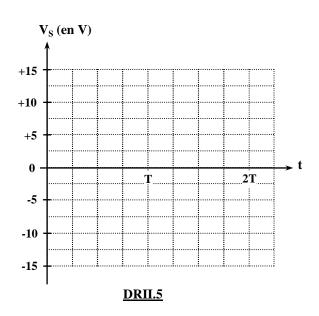
La tension U_2 est appliquée aux extrémités B et D du potentiomètre P. La position du curseur C définit la tension U_3 . On donne : $V_{sat} = 15 \text{ V}$; $U_1 = 5 \text{ V}$; $U_2 = 6 \text{ V}$; $R_1 = 3 \text{ k}\Omega$; $R_2 = 2 \text{ k}\Omega$.


- **B.1.** Exprimer la tension V_A au nœud A en fonction de V_E , U_1 , R_1 et R_2 .
- **B.2.** La tension V_E est le signal triangulaire donné figure DRII.3. Représenter le signal V_A (en indiquant les valeurs des amplitudes extrêmes) pour $0 \le t \le 2T$ (DRII.4).
- **B.3.** Quelle relation doit-on avoir entre V_A et U_3 pour que $V_s = +V_{sat}$?
- **B.4.** Quelle relation doit-on avoir entre V_A et U_3 pour que $V_s = -V_{sat}$?
- **B.5.** Le curseur C du potentiomètre P est en D. Représenter le signal V_s pour $0 \le t \le 2T$ (DRII.5).
- **B.6.** Le curseur C est au milieu de BD. Représenter le signal V_s pour $0 \le t \le 2T$ (DRII.6).








Bon Travail

