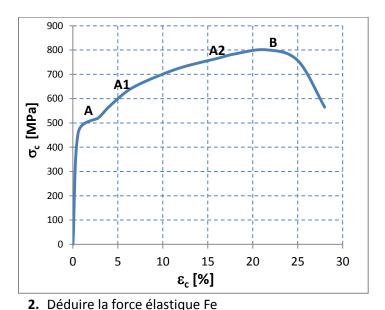
DGET	DS	Documents non Autorisés
ISET du Kef	20	Durée: 1 heure
Dép. DGM	Caractérisation des matériaux	Avril 2014
Module Matériaux	1ère Année Licence Appliquée en Génie Mécanique	Classe: TGM1
Nom:	Prénom :Classe :	B. Nasser Mohamed


Mise en situation

Le comportement mécanique des matériaux dépend des liaisons interatomiques mises en jeu et de son énergie de cohésion résultante. Ce comportement peut être décomposé, pour une grande gamme des métaux, en un comportement élastique (à déformation réversible) et un comportement plastique (à déformation permanente). L'épreuve traite ces deux aspects de comportement en traction et des liaisons interatomiques.

Exercice 1 : Caractérisation mécanique d'un acier doux (15 pts)

Une éprouvette cylindrique en aciers doux est sollicitée en traction monotone a permis de tracer la courbe de traction conventionnelle ci-dessous. On vous donne l_0 =25mm et d_0 =6mm sachant que le diamètre à la rupture d_u =5.25mm. On vous demande de :

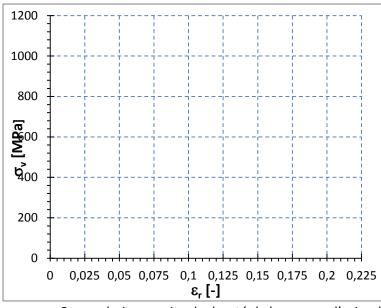
1. Remplir le tableau ci-contre et illustrer graphique sur la courbe.

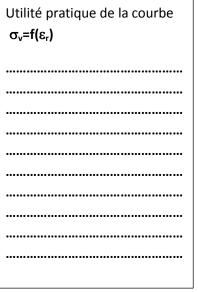
Caractéristique	Unité	Grandeur
Re		
Rm		
Rr		
A%		
Z%		
Calcul de Z%		
• • • • • • • • • • • • • • • • • • • •		
•••••		
		l e e e e e e e e e e e e e e e e e e e

3.	Déduire la force maximale de traction Fm
4.	Déduire l'allongement à la rupture Alu
	Que représente, <u>physiquement</u> , le module d'Young E en MPa.

6. Etablir une démarche et expliquer par un schéma (à considérer la déformation uniforme à section constante pour deux configurations données entre A et B) et démontrer que $\sigma_v = \sigma_c (1 + \varepsilon_c)$

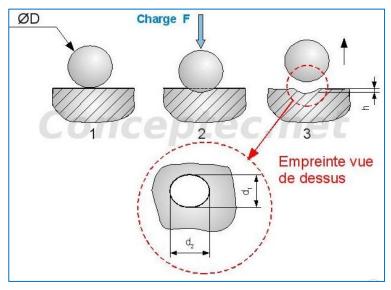
Expliquer par un schéma si nécessaire


Démarche de la démonstration	
	·•••


En A₁ En A₂
Configuration géométrique de l'éprouvette

7. Remplir le tableau suivant en calculant les contraintes vraies et les déformations rationnelles. On vous donne $\varepsilon_r=Ln(1+\varepsilon_c)$

Points	01	02	03	04	05	06	07	08	09	10	11	12	13
ε _c (%)	0	0,6	2,8	4	6	8	11	13	16	18	21,5	25	28
$\sigma_{c}[MPa]$	0	461	520	566	630	670	715	738	765	784	801	757	565
ε _r (%)													
$\sigma_v[MPa]$													


8. Tracer la courbe $\sigma_v = f(\varepsilon_r)$ et discuter son utilité pratique

On voudrait connaître la dureté de la nuance d'acier doux. Pour ceci, on applique l'essai Brinell à l'aide d'une bille de diamètre D= 1,5875 mm.

9. Déduire de la figure ci-dessous le principe de l'essai de dureté Brinell

10. Calculer la dureté HB si d_1 =0,342mm; d_2 =0,375mm; F= 9,81.K.D²; K=30. On donne (d est la dimension moyenne de l'empreinte):

$$\mathrm{HB}\cong 0,0649\cdot \frac{F}{D\cdot (D-\sqrt{D^2-d^2})}$$

Exercice 2: Liaisons interatomiques (06 pts)

1. On vous demande dans cette question de comprendre et de décrire la liaison qui peut s'établir entre un atome d'azote N (à 7 électrons) et trois atomes d'hydrogène H (à 1 seul électron). Pour ceci, on vous demande de remplir le tableau ci-dessous :

Atome en liaison	Schéma de liaison	Déduire le type de liaison et justifier
Un atome d'azote		
N et trois atomes		
d'hydrogène H		

	2. Si l'expression de l'énergie de cohésion entre deux atomes donnés A1 et A2 peut s'écrire :						
$U_c =$	$U_c = -\frac{A}{r^m} + \frac{B}{r^n}$ (A, B, m et n sont des constantes); expliciter la signification physique des deux						
parti	parties de l'expression, et établir la formulation de ses deux dérivés primaire et seconde.						